Multidisciplinary Design Optimization of a UAV Wing using Kriging based Multi-Objective Genetic Algorithm

نویسندگان

  • S. Rajagopal
  • Ranjan Ganguli
چکیده

This paper investigates the preliminary wing design of Unmanned Aerial Vehicle (UAV) using a two step optimization approach. The first step is a single objective aerodynamic optimization whereas the second step is a coupled dual objective aerodynamic and structural optimization. In the single objective case, airfoil geometry is optimized to get maximum endurance parameter at a 2D level with maximum thickness to chord ratio and maximum camber as design variables. Constraints are imposed on the leading edge curvature, trailing edge radius, zero lift drag coefficient and zero lift moment coefficient. After arriving at the optimized airfoil geometry, the wing planform parameters are optimized with minimization of wing weight and maximization of endurance parameter corresponding to the wing and four more design variables from the aerodynamics discipline namely taper ratio, aspect ratio, wing loading and wing twist are added in the second step. Also, four more design variables from the structures discipline namely the upper and lower skin thicknesses at root and tip of the wing are added with stall speed, maximum speed, rate of climb, strength and stiffness as constraints. The 2D airfoil and 3D wing aerodynamic analysis is performed by the XFLR5 code and the structural analysis is performed by the MSC-NASTRAN software. In the optimization process, a relatively newly developed multi-objective evolutionary algorithm named NSGA-II (non-dominated sorting genetic algorithm) is used to capture the full Pareto front for the dual objective problem. In the second step, in order to reduce the time of computation, the analysis tools are replaced by a Kriging meta-model. For this dual objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the preliminary design of the UAV wing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wing-body Optimization Based on Multi-fidelity Surrogate Model

This paper focuses upon the efficient surrogate model algorithm for expensive simulation-based design optimization problems. Co-kriging method is used to develop a multi-fidelity surrogate model using two independent datasets. To achieve this objective, wing-body problem is taken as an example of application for highdimensional complex design problem. In addition, a simple sampling analysis is ...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

Multi-Objective Design Exploration for Aerodynamic Configurations

A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization problems. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Org...

متن کامل

The Multidisciplinary Design Optimization of a Reentry Vehicle Using Parallel Genetic Algorithms

The purpose of this paper is to examine the multidisciplinary design optimization (MDO) of a reentry vehicle. In this paper, optimization of a RV based on, minimization of heat flux integral and minimization of axial force coefficient integral and maximization of static margin integral along reentry trajectory is carried out. The classic optimization methods are not applicable here due to the c...

متن کامل

A Generic Framework for the Design Optimisation of Multidisciplinary UAV Intelligent Systems using Evolutionary Computing

Asynchronous Parallel Evolutionary Algorithms (HAPEAs) have shown to be robust as they require no derivatives or gradients of the objective function, have the capability of finding globally optimum solutions amongst many local optima, can be executed asynchronously in parallel and adapted easily to arbitrary solver codes without major modifications. The application of the methodology is illustr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009